

2023;1:92-112 DOI: 10.57603/EJT-012 Systematic review

SOME LIKE IT HOT. UTILITY AND MECHANISMS OF *EX-SITU* NORMOTHERMIC MACHINE PERFUSION OF THE LIVER

Damiano Patrono, Nicola De Stefano, Federica Rigo, Davide Cussa, Renato Romagnoli

Chirurgia Generale 2U, Azienda Ospedaliero Universitaria Città della Salute e della Scienza. Turin, Italy

Summary

The need for donor pool expansion in liver transplantation has increased utilization of grafts from so-called extended-criteria donors. Machine perfusion technology can improve preservation of these grafts, and its use has been associated with improved short- and long-term outcomes. During normothermic machine perfusion the graft is preserved at 37°C, and continuously supplied with oxygen and nutrients. The main advantages of this preservation technique are the reduction of ischemia-reperfusion injury, the prolongation of preservation time, and the possibility to assess graft viability or delivering therapies *ex-vivo*. However, it is still considered as a complex technique, which has elicited some reticence about its utilization among transplant professionals.

The aim of this narrative review is to give a synthetic but comprehensive update on normothermic machine perfusion in liver transplantation, discussing its fundamental principles and clinical implications. Technical and procedural aspects, along with physiological bases, will be discussed. Results of clinical trials will be summarized, including those highlighting the role of this technology in the delicate process of assessing liver viability and its impact on transplant logistics. Finally, latest findings in the field of basic and translational research on organ reconditioning will be reported.

Key words: normothermic machine perfusion, viability assessment, ischemic cholangiopathy, liver preservation, reconditioning

INTRODUCTION

After the early experiences during the pioneer era of solid organ transplantation, the challenge of improving preservation and utilization of grafts from socalled extended-criteria donors (ECD) has brought machine perfusion (MP) to renewed life. In 2010, the study by Guarrera et al. ¹ about the first series of liver transplants (LT) performed with grafts treated by hypothermic machine perfusion marked the beginning of a revolution in organ preservation in clinical liver transplantation.

Among the different techniques and approaches included under the broad term "machine perfusion", normothermic machine perfusion (NMP) is one of the modalities that has been most extensively studied and widely adopted. The founding principle of NMP is creating a physiologic environment in which

Received: July 6, 2022 Accepted: September 29, 2022

Correspondence

Renato Romagnoli

Liver Transplant Unit, General Surgery 2U, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, University of Turin, Corso Bramante 88-90, 10126 Turin, Italy Tel.: +39 011 6334374. Fax: +39 011 6336770. E-mail: renato.romagnoli@unito.it

How to cite this article: Patrono D, De Stefano N, Rigo F, et al. Some like it hot. Utility and mechanisms of ex-situ normothermic machine perfusion of the liver. EJT 2023;1:92-112. https://doi.org/10.57603/EJT-012

© Copyright by Pacini Editore Srl

This is an open access article distributed in accordance with the CC-BY-NC-ND (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International) license. The article can be used by giving appropriate credit and mentioning the license, but only for noncommercial purposes and only in the original version. For further information: https://creativecommons. org/licenses/by-nc-nd/4.0/deed.en the liver is perfused at 37°C with an oxygenated perfusate and is supplied with nutrients, supporting its metabolism outside the body. This preservation modality avoids cold ischemia and allows reverting the detrimental effects of the initial period of static cold storage, if any. Thanks to the availability of transportable and fully automated devices, NMP can be initiated at the donor hospital, being referred to as normothermic machine preservation of upfront NMP. Otherwise, when NMP is started at the recipient hospital after an initial period of SCS, it is named end-ischemic or back-to-base NMP.

Despite the large number of clinical studies and the rapidly growing clinical experience, NMP is still perceived as complicated and potentially dangerous by many transplant professionals. Understanding the basic principles and molecular mechanisms of NMP, as well as acquiring a general knowledge about its clinical results and applications are fundamental prerequisites for any transplant surgeon willing to approach this fascinating yet demanding area of organ preservation.

Thus, this review aims at summarizing the physiology and mechanistic aspects underlying the clinical advantages offered by this preservation technique. This is relevant also in the light of the current debate about the pros and cons of different MP modalities, especially NMP and hypothermic oxygenated machine perfusion (HOPE). The implications of the possibility of testing graft function pre-LT and significantly extending preservation time will also be discussed, along with the perspectives offered by the utilization of NMP as a platform for delivering organ treatments and other potential applications.

MATERIALS AND METHODS

The PubMed database was accessed on May 18th, 2022, using the search terms "normothermic machine perfusion" AND "liver", with no time nor language restrictions, retrieving 254 articles. Literature review was performed by 4 Authors (DC, DP, FR and NDS) and any disagreement was resolved by consensus. Abstract were screened to select relevant articles, initially including 88 articles for full-text review. An additional 28 articles were included by cross-checking references from the included manuscripts, leading to the final inclusion of 116 articles. Of those, 41 (35.3%) were about clinical applications of NMP, 34 (29.3%) about NMP mechanism, and 41 (35.3%) about the use of NMP as a platform for organ treatment and other potential applications (Fig. 1).

Given the narrative nature of this review, a formal metaanalysis was not performed. Ethical approval was not sought.

RESULTS

Technical aspects

Although different NMP devices are available on the market, their basic elements are constant. These are the organ bowl, the perfusate reservoir, the oxygenator(s), the pump(s), the filter(s), the heat exchanger, and the tubing circuit. In addition, any MP device has several pressure, flow and temperature sensors, which are connected to a control system representing the "brain" of the machine. The goal of NMP is recirculating through the organ a perfusate delivering oxygen and nutrients to sustain liver metabolism². To meet the oxygen demand of tissues perfused at physiologic temperature, the presence of an oxygen carrier into the perfusate is required. Most frequently, third-party red blood cells are used, but these have been successfully replaced by a synthetic haemoglobin-based oxygen carrier ^{3,4}. Other components of perfusate used during NMP are colloids, nutrients (glucose, aminoacids, vitamins), insulin, heparin, vasodilators, bile salts and mineral supplements ⁵. Perfusate composition may vary according to different protocols, especially depending on the duration of the perfusion. As NMP represents an ideal environment for bacterial growth, antibiotics and, less frequently, antifungals can be added to the perfusate. To preserve liver viability during NMP, flow and pressure into the hepatic artery, portal vein and inferior vena cava must be maintained close to physiological levels ^{2,6}. This

is normally accomplished by regulating the pressure generated by the pump(s) and/or by the mean of pinch valves placed at specific points of the tubing. At the same time, oxygen and carbon dioxide pressures must be regulated. Perfusate hyperoxygenation should be avoided, as it has been associated with persistent recipient vasoplegia after liver implantation ⁷. NMP devices have incorporated the technology of modern membrane oxygenators, which allow the diffusion to blood (or perfusate) of gases through membranes with pores of diameter ≤ 1 micron, a size limit dictated by the need to avoid spillage of liquids through the membrane. By using a gas mixer, membrane oxygenators allow the independent control of the transference of O_2 and CO_2 . As O_2 transference depends upon its percentage in the gas mixture pushed through the oxygenator, increasing O_2 fraction will determine an increase in blood or perfusate oxygen pressure. Conversely, being CO₂ more soluble, its removal depends upon the gas flow through the oxygenator. Thus, increasing gas flow will also increase CO_2 removal from the blood or perfusate ⁸. Blood or perfusate flow thorough the oxygenator is also important for gas homeostasis. During extra-corporeal membrane oxygenation, a minimum 50-60 ml/kg/min of blood flow is necessary to ensure proper oxygenation, as increasing gas flow will have only minimal effect on blood

Figure 1. Literature search.

oxygenation. Conversely, due to its higher solubility, only 10-15 ml/kg/min of blood flow is necessary to effectively remove CO_2 , which is mainly dependent upon gas flow °. Thus, it is evident how a tight regulation of vascular flows and pressure and of gas mixture and flow are necessary to achieve optimal perfusate oxygenation and effective CO_2 removal. Available commercial devices are characterized by different degrees of automation, which determines the amount of monitoring by trained personnel required to operate the device and also its transportability.

The complexity of NMP appears to increase proportionally to the duration of the perfusion, both in the experimental and clinical setting ¹⁰. For example, to sustain bile production and counterbalance heparin degradation in the NMP circuit, continuous infusion of bile salts and heparin are needed for perfusions lasting up to 24 hours ¹¹. This concept is well reflected by the recent studies by the Zurich group about the development of a device allowing NMP to be extended up to several days. This fully automated prototype integrates different core technologies, including a dialysis unit, continuous infusions of insulin, glucagon and vasodilators, centrifugal pumps delivering a pulsatile flow into the hepatic artery and a continuous one into the portal vein, oxygenation, electrolytes and haematocrit control, and a liver case equipped with a soft inflatable mat mimicking diaphragmatic movements and avoiding pressure sores at the contact areas ^{12,13}. After obtaining authorization for its compassionate use, this device allowed successful transplantation of a very marginal liver preserved for 68 hours ¹⁴, opening the possibility of long-term viability assessment and reconditioning of grafts initially not meeting most commonly applied viability criteria ¹⁵⁻¹⁷.

Indeed, NMP can be applied at different timings during preservation. Normothermic machine preservation or upfront NMP is initiated at the donor hospital and has the advantage of reducing to a minimum the duration of initial cold ischemia time, which is nonetheless not completely avoidable due to the time necessary to complete the hepatectomy in the donor and prepare the liver for connection to the NMP device. According to Karangwa et al. ¹⁸ pre-NMP cold ischemia time should not exceed 3 hours to define NMP as upfront. By minimizing cold ischemia time, this approach should guarantee optimal preservation. Indeed, in the experimental setting it has been shown that even a short period of cold preservation has detrimental effect of graft recovery, especially in severely damaged grafts ^{19,20}. Not surprisingly, in both larger randomized

controlled trials having compared SCS with NMP^{21,22}, this last was initiated at the donor hospital. However, upfront NMP also poses significant logistical challenges. This approach requires a fully automated and transportable device that must travel to and from the donor hospital. The liver must be prepared and connected on the device on-site, which implies the availability of the necessary surgical instruments and of a suitable space in the donor theatre. The presence of aberrant hepatic arteries, even if their reconstruction can be accomplished once the liver is connected to the device ²³, may further complicate this step. Once the liver is connected to the NMP device, a variable period of observation aimed at verifying haemostasis and equilibrating pH is necessary, which may prolong theatre occupation. Finally, any device malfunction or other problems arising during transportation may be particularly risky, as little or no intervention is possible during this phase.

For these reasons, many centres have preferred a so-called back-to-base approach, in which NMP is initiated once the organ arrives at the recipient hospital and, therefore, after a possibly long SCS time. Although this might be suboptimal from a preservation standpoint, this approach is undoubtedly simpler, and it is currently preferred by most centres ²⁴⁻²⁹. Ceresa et al. ³⁰ showed comparable outcomes in 31 patients transplanted with livers treated by NMP after a mean SCS time of 6 hours 1 minute, as compared to those of 104 patients receiving a graft treated by upfront NMP, suggesting that this approach might facilitate the adoption of NMP technology. These findings were in keeping with those from Bral et al. ³¹ showing a substantial comparability of outcomes between the two approaches. More importantly, endischemic NMP allows viability testing of grafts initially discarded for transplantation ³², which will be discussed more in details further on.

In both upfront and back-to-base approaches, however, NMP is started after a variable period of cold ischemia. To completely avoid cold ischemia, a third approach named "ischemia-free organ transplantation" (IFOT) has been described ³³. In IFOT, the liver is fully cannulated and connected to the NMP device in-situ, while still perfused by donor blood. Once the connections are established, systemic blood supply is halted by clamping inflow and outflow vessels, while NMP is simultaneously started. The liver is then procured and moved to the perfusion device. In the recipient, vascular anastomoses are performed under continuous NMP. Once the liver has been implanted, NMP is stopped while the vascular clamps are removed and the graft is reperfused by recipient blood ³⁴. As compared to conventional SCS, IFOT has been shown to prevent the activation of several pathways leading to ischemia-reperfusion injury (IRI) ³⁵. Clinically, this has resulted into better post-LT graft function (lower AST and ALT peak, lower end-of-transplant lactate level, lower incidence of postreperfusion syndrome, lower model for early allograft failure score) and improved outcomes (shorter ICU stay and reduced incidence and severity of non-anastomotic biliary strictures) (Dr. Zhiyong Guo – personal communication). However, IFOT is still prerogative of one centre and its reproducibility and advantages need confirmation.

Mechanism of action

Different hypotheses have been formulated to explain the observed advantages of NMP over SCS. The mechanisms behind the superior outcomes associated with the use of NMP in clinical LT are complex and multifaceted ³⁶. These mechanisms have been investigated at different levels.

Restoration of ATP production

Protracted ischemia and ATP depletion damage mitochondria and lead to reactive oxygen species (ROS) production once hepatocytes are abruptly reoxygenated, which in turn initiates the complex cascade of events finally leading to IRI. Furthermore, hypothermia slows down mitochondrial respiration by inhibiting the transition of complex I to its active form ³⁷. Overall, all dynamic preservation techniques have been shown to better protect mitochondria as compared to SCS ³⁸. During NMP, cellular metabolism is maintained by normal perfusate oxygenation, preventing or mitigating ischemia-related events and providing substrate for ATP production ³⁹. Simultaneously, anaerobic metabolism is reduced and this results in a decreased accumulation of selected metabolites, including lactate, and in the stimulation of pro-apoptotic pathways ⁴⁰. Xu et al. ⁴¹ demonstrated that porcine DCD livers exposed to 60 minutes of warm ischemia can be resuscitated by NMP due to the possibility of restoring tissue ATP content and improving mitochondrial integrity, which can already be observed after one hour of perfusion. As compared to sub-normothermic machine perfusion, NMP has been shown to reduce liver damage, especially during prolonged perfusions, by limiting shear stress on sinusoids, maintaining active metabolism, and satisfying oxygen demand ⁴². Lonati et al. ⁴³ demonstrated that NMP modulates the expression of several metabolites implicated in different cellular pathways, of which the majority are in the mitochondria.

An interesting approach to optimize metabolic and mitochondrial recovery, especially after an initial period of SCS, might be the sequential application of HOPE and NMP, a strategy that has been investigated by both the Groningen ^{4,28} and Birmingham ⁴⁴ groups. This approach combines the beneficial effects of HOPE on mitochondrial respiration with the possibility of sustaining normal liver metabolism and testing viability during NMP. Boteon et al. ⁴⁴ suggested that a combined protocol of HOPE + NMP might attenuate oxidative stress, tissue inflammation, and improve metabolic recovery of highest-risk livers. Using this protocol, the same group reported the benefits of oxygen administration on liver microenvironment and ATP production ⁴⁵. They suggested that the use of NMP in combination with HOPE using a perfusate containing a haemoglobin-based oxygen carrier was associated with enhanced ATP synthesis, lower tissue expression of markers of oxidative tissue injury and reduced activation of inflammatory cells. This concept was clinically implemented by the team led by Prof. Porte in Groningen in the D-HOPE-COR-NMP trial ⁴, a prospective study of which the updated results have been recently published ²⁸.

Modulation of inflammation

Downregulation of inflammatory pathways is pivotal to reduce IRI, which is characterized by a broad activation of inflammation as a response to the initial cellular damage. Cold-inducible RNA Biding Protein (CIRP), a group of proteins expressed as a response to hypoxia and hypothermia, are responsible for the activation of different inflammatory pathways ⁴⁶. The expression of these proteins appears to increase proportionally to hepatic IRI and conversely their reduction/blocking appears to be associated with reduced expression of inflammatory cytokines and reduced neutrophil infiltration, which results in reduced cell apoptosis and lower oxidative stress ⁴⁷. CIRP expression seems to be upregulated in grafts from DCD donors. In an animal DCD model, Liu et al. 48 observed increased CIRP levels during warm ischemia and demonstrated that NMP, as compared to SCS, reduced CIRP-mediated oxidative stress. Attard et al. 49 observed that the mitigation of the inflammatory response associated with end-ischemic NMP may promote endothelial regeneration and even prevent the shear stress derived from vessels cannulation, an effect that was particularly evident close to cannulation sites.

Modulation of the immune response

Modulation of the immune response is closely linked to the beneficial effects associated with NMP. In a muchneeded study, Jassem et al. ⁵⁰ investigated the differences in the activation of inflammatory pathways, apoptosis and IRI between DBD livers preserved by SCS *versus* NMP using microarrays, immunoprofiling of hepatic lymphocytes and immunochemistry staining. Changes in gene expression were evaluated on liver biopsies obtained at the end of preservation and 60 minutes after reperfusion into the recipient. Livers preserved by NMP showed a reduced expression of pro-inflammatory genes and an upregulated expression of regeneration pathways. More specifically, pathways linked to graft rejection, graft-versus-host disease, platelet/coagulation and immune response were downregulated in NMP livers. These changes were more apparent on liver biopsies obtained at the end of the preservation. Moreover, the characterization of hepatic mononuclear cells collected from the liver effluent at the end of preservation (representative of liver resident lymphocytes), showed that NMP liver contained less interleukin-17 and interferon-y-producing lymphocytes and more regulatory T cells. At histological analysis of post-reperfusion biopsies, NMP livers showed lower degrees of apoptosis and necrosis and less neutrophil infiltration. Overall, these observations were interpreted as an overall lower activation of inflammation, enhanced regeneration, and modulation of the immune response in NMP livers. Gene and protein expression during NMP was also analysed by the Ohman et al. ⁵¹ in relation to liver function. In their study, human livers with adequate hepatocellular function during NMP were characterized by an early activation of innate immune response followed by activation of autophagy. Conversely, dysfunctional livers were characterized by delayed transcriptional activation of injury response pathways, suggesting that, while NMP activates repair mechanisms in response to IRI, its effectiveness might be related to perfusion duration and to the severity of the injury suffered before NMP. In a reducedsize pig LT model, Zang et al. ⁵² compared the expression of cytochrome C, caspase 3, Nf-KB p65 - transcription factor of several cytokines and chemokines in response to immune stimuli - and other inflammatory cytokines between pigs receiving a graft reduced during NMP versus SCS. Overall, levels of inflammatory cytokines (TNF- α , IL-1, IL-6) were lower after NMP, as was the expression of cytochrome C, caspase 3 and Nf-KB p65. These findings were consistent with a reduction of inflammation, mitochondrial injury, and apoptosis in the NMP group.

Other mechanisms

The effect of NMP on liver synthetic capacity has been investigated in several studies. Karangwa et al. 53 described the secretion patterns of prothrombin and plasminogen during NMP of discarded human livers, as indicators of the activation of coagulation and hyperfibrinolysis. In a previous study ⁵⁴, the same group had suggested that end-ischemic NMP results in an activation of fibrinolysis, but not of coagulation, and that markers of fibrinolysis correlate significantly with hepatocellular function during NMP. They suggested that high perfusate D-dimers levels soon after the start of NMP can be considered a marker of severe IRI and a predictor of poor function. From a recipient perspective, lonescu et al.⁵⁵ compared intraoperative thromboelastograms of patients transplanted with a liver preserved by NMP to those of matched recipients of a SCS liver. While there were no significant differences at pre-implantation thromboelastography, after implantation recipients of NMP livers had shorter R and R + K times, wider alpha angle and larger maximum amplitude

and G values. Hyperfibrinolysis was also mitigated by NMP treatment, in keeping with earlier and more effective recovery of synthetic function by NMP-preserved livers. Using a porcine DCD model, Gilbo et al. ⁵⁶ evaluated the production of coagulation factors (FV, FVII, FVIII, FIX, FX) during NMP according to warm ischemia time (minimal versus 60-minutes warm ischemia time). The same data were obtained from perfusates collected during the COPE trial ²² and correlated to postoperative transaminase peak. In perfusate from life-sustaining livers that were utilized for LT, Authors observed that coagulation factors accumulated during NMP regardless of donor type or postoperative transaminase peak. However, in the experimental model, livers exposed to 60-minutes warm ischemia time had 2 to 6-fold lower coagulation factors levels, which were negatively correlated with perfusate AST and lactate, suggesting that a reduced synthetic capacity during NMP could represent a sign of severe injury, to be evaluated in further studies.

A further aspect favouring NMP over SCS relates to improved preservation of cholangiocytes and biliary tree. In a rat model of isolated-reperfused rat liver, NMP resulted in better preservation of the function and morphology of biliary epithelial cells, especially in DCD livers ⁵⁷. Biomarkers of bile duct injury (gamma-glutamyltransferase and lactate dehydrogenase in bile) were lower in NMPpreserved livers, whereas biliary bicarbonate concentration, reflecting biliary epithelial function, was higher. At histological examination, extrahepatic bile ducts of NMPpreserved livers demonstrated significantly decreased injury of the biliary epithelium, which was correlated to ATP depletion in SCS-preserved livers. This was confirmed also in a study from the Cleveland Clinic ⁵⁸, in which 10 pig livers having been exposed to 60 minutes of warm ischemia were preserved via SCS or sanguineous NMP for 10 hours (5 per group), and then reperfused for 24 hours with whole blood in an isolated perfusion system to simulate transplantation. NMP was associated with better biliary epithelium preservation during the 24 hours of simulated graft reperfusion and promoted extrahepatic biliary epithelium and peribiliary glands regeneration.

Along with the production of coagulation factors, other aspects of liver metabolism appear to be maintained during NMP, as transaminase metabolism. In a study by the Toronto group ⁵⁹, pig livers underwent NMP for 48 hours, during which a high transaminase solution was administered to attain a target perfusate level of 7500 IU/L. Authors observed that transaminases were progressively cleared from perfusate, indicating preserved liver metabolism. As liver function was not evidently affected by the increase in transaminase levels, authors argue that clearance of endogenous or exogenous transaminases during NMP could be used as a graft tolerance test and as a marker of graft function and viability.

Clinical results

The advantages of NMP over SCS have been evaluated by three randomized controlled trials ^{21,22,25} and some retrospective studies ^{24,60-63}.

Most of the evidence about the superiority of NMP over SCS comes from studies in which an upfront approach was used. Ravikumar et al.⁶¹ reported the first clinical series of 20 liver transplants performed using normothermic machine preservation, demonstrating the safety and feasibility of the technique. When recipients of livers preserved by NMP were compared with a 1:2 matched cohort of patients transplanted with a SCS-preserved graft, post-LT AST peak was significantly lower. This study paved the way for the pivotal COPE (Consortium for Organ Preservation in Europe) trial ²², which was a large multicentre trial comparing the outcomes of 121 patients receiving an NMP-preserved liver (DCD, n = 34, 28.1%) with those of 101 recipients of a liver preserved by standard cold storage (DCD, n = 21, 20.8%). The study met its primary endpoint and showed that NMP use was associated with a significantly lower AST peak (488 vs 965 IU/L, p < 0.001) in the 7 days following LT. Additionally, utilization rate was higher in the NMP group (88.3 vs 75.9%, p = 0.008), whereas the rates of postreperfusion syndrome (12.4 vs 33%, p < 0.001) and early allograft dysfunction (10.1 vs 29.9%, p < 0.001) were lower. This study, in which all patients had a magnetic resonance cholangiopancreatography performed 6 months after LT, failed to show a significant benefit of NMP on the development of anastomotic biliary complications or ischemic cholangiopathy. The incidence of ischemic cholangiopathy was lower in recipients of DCD grafts preserved by NMP, but without reaching statistical significance (11.1 vs 26.3%, p = 0.18). However, functional ischemia time was significantly longer in the NMP group (21 min vs 16 min, p = 0.003) and only one patient in each arm had clinically significant ischemic cholangiopathy requiring re-LT. The benefit of NMP on patient hemodynamics during LT was analyzed more in deep by Angelico et al.⁶⁰, who observed that after graft reperfusion patients receiving a liver preserved by NMP had higher mean arterial pressure, which was achieved with inferior vasopressor requirements and less blood transfusions. In contrast, a study from the Edmonton (Canada) group comparing outcomes of 9 livers preserved by NMP with those of a matched cohort of liver preserved by SCS failed to show any benefit of NMP 62. In this study, ICU and hospital stay were significantly longer after NMP, and one NMP-preserved graft was discarded due to a technical error. More recently, the multicentre PROTECT trial compared the outcomes of 153 vs 146 LT performed using NMP or SCS, respectively ²¹. This study confirmed COPE trial findings and met its primary endpoint, showing a significant reduction in the rate of early allograft dysfunction in NMP group (18 vs 31%, p = 001). Histological features of ischemia-reperfusion

injury were less evident after NMP. More importantly, this study demonstrated a significant benefit of NMP towards the development of ischemic cholangiopathy at 6 months (1.3 vs 8.5%, p = 0.02) and 12 months (2.6 vs 9.9%, p = 0.02). Less studies have compared end-ischemic NMP with SCS. probably because, in most cases, this approach has been aimed at recovering livers previously deemed unsuitable to be transplanted. In this setting, a comparison with SCS would be rather artificial. The only randomized controlled study having compared end-ischemic NMP with SCS was that by Ghinolfi et al. ²⁵, which has also been the first machine perfusion study of this kind to be published. When applied to > 70-year-old donors (n = 10 in each arm), NMP use was not associated with significant clinical advantages over SCS, but electron microscopy suggested reduced ischemia-reperfusion injury in NMP-treated livers. Liu et al. 63 demonstrated the feasibility of end-ischemic NMP using an institutionally-developed device in a series of 21 LT (DCD, n = 8). When recipients of these livers were compared to a matched cohort of historical controls, transaminase peak and early allograft dysfunction rate were reduced. In a more recent retrospective study, Fodor et al. ²⁴ compared the outcomes of 59 recipients of an NMP-treated liver (DCD, n = 9, 16%) with those of a matched cohort of LT performed using SCS, selected using 1:1 propensity score matching. While clinical outcomes were mostly comparable, recipient of NMP-treated livers developed less ischemic-type biliary lesions (3% vs 14%, p = 0.047).

Viability assessment and effects on organ utilization

One fundamental aspect of NMP utility is the possibility of testing *ex-situ* the function of livers to be transplanted. Many organs offered for LT, especially those from DCD donors, are discarded. Traditionally, liver acceptance has been based on the evaluation of donor factors ⁶⁴ or donorrecipient matching 65-69, with the aim of modelling the risk of graft loss or recipient death associated with a specific case. However, graft acceptance varies widely in everyday practice, depending on centre attitude, experience, waiting list pressure and other logistical factors ⁷⁰. The ground-breaking potential of NMP lies in the possibility of assessing liver function and metabolism after the damage sustained during procurement and initial cold preservation in an unbiased environment, thus providing objective parameters guiding graft acceptance. Most widely adopted criteria for viability assessment during NMP are based on lactate and glucose metabolism, pH homeostasis, vascular flows, perfusate transaminases and bile production and composition 4,7,24,27-29,32,61,71-78. However, at least in theory, any metabolic function can be tested during NMP and serve as a further element to assess liver viability 54,56,79. A detailed description of the physiological bases of current viability criteria is beyond the scope of this review, as this will be the subject of another article in this issue. However, some concepts are worth stressing. First, when applied in the setting of livers initially deemed not acceptable for LT, NMP has allowed successful recovery and transplantation of 46 to 100% of livers, confirming its huge potential in expanding donor pool (Tab. I). However, primary non-function of NMP-treated livers has been anecdotally reported ²⁹ and, more importantly, nonanastomotic biliary strictures have been observed ^{4,27,29,32}. This has led some centers to include in their protocols parameters to assess cholangiocyte viability 73, which has refined the ability to predict subsequent development of ischemic cholangiopathy ²⁸. However, these criteria have been criticized as they might be too restrictive ⁸⁰. The debate about how high-risk livers should be evaluated during NMP is still ongoing. Overall, viability assessment appears to be a science in its infancy, as reflected by the number of different protocols and by the substantial evolution of viability criteria over time at the same leading centres (Fig. 2) ^{4,28,32,72-74,76}. Furthermore, no protocol has been validated across different centres. At present, an element of subjectivity in the complex decision of accepting a liver graft still appears to be unavoidable ⁸¹.

Transplant logistics

Improving transplant logistics is one the main goals of machine perfusion. While this is not an exclusive feature of NMP^{82,83}, the possibility of significantly prolonging preservation time, with consequent obvious advantages on the logistics of LT, has been indicated as one of the most interesting properties of NMP since its early days ⁶¹. Potentially, systematic use of NMP could transform LT into a semi-elective procedure, allowing avoiding out-of-hours procedures. From this point of view, the experience of the Innsbruck team might represent an organisational model to be taken as a reference ^{24,71}. The fundamental aspects of this model are extensive training, role separation, harmonic interaction between different figures (surgeons, anaesthetists, nurses and perfusionists), troubleshooting capacity and a holistic approach to NMP indications. At this centre, which applies NMP back-to-base upon organ arrival, the liver is handed over to the intensive care unit (ICU) team after it has been prepared and connected to the NMP device by the on call surgeon. In the ICU, the liver on the machine is treated and monitored like a patient. At the end of the preservation, device and perfusate parameters are reviewed and, if the liver is deemed viable and suitable, LT is started. This approach has allowed completely avoiding LT performed overnight. More importantly, the use of NMP is decided not only based on donor characteristics, but also taking into due consideration logistical aspects and recipient characteristics, an approach our group completely agrees upon ⁸⁴.

The positive impact of NMP on transplant logistics has also been highlighted by the Birmingham group in the recently published NAPLES study ⁸⁵. In this study, outcomes of

.p
at
ant
JSL
ä
, t
for
D
<u>q</u>
ar
SC
Ð
L[
<u>.e</u>
D <u>i</u>
ee
ã
b
÷
ha
Ś
ē
<u>:</u>
of
Ē
.9
Ĵ
5
ā
ne
i L
aG
Ε
. <u>⊇</u> .
3
je
ot
Ē
Ъ
C _
à
Ц
Ъ
SЦ
es
SS
, a
÷
bil
/ia
Ĺ
fte
σ.
ate
uc
atic
ЦŽ.
ltil
2
-
p
Ta

Author	_		Viability criteria	Time	Iltilization	DNF	<u>c</u>
				2	rate		2
Mergental et al., 2016 ⁷⁴	9	4/5 (80%)	Perfusate lactate level < 2.5 mmol/L or evidence of bile production + at least 2 of the following: 1) pH > 7.3; 2) stable vascular flows (hepatic artery flow > 150 ml/min and portal vein flow > 500 ml/min; 3) homogeneous perfusion and soft consistency	3 h	5/6 (83.3%)	%0	AN
Watson et al., 2017 ⁷	12	9/12 (75%)	Changes in perfusate lactate, glucose and transaminases concentration + ability to maintain pH without supplemental bicarbonate	NA	ΝA	1/12 (8.3%)	(3/12) 25%
Watson et al., 2018 ²⁹	47	35/47 (74.5%)	Variables associated with successful transplantation: 1) Maximum bile pH > 7.5; 2) Bile glucose concentration ≤ 3 mmol/L or > 10 mmol less than perfusate glucose; 3) Ability to maintain perfusate pH > 7.2 with ≤ 30 mmol bicarbonate supplementation; 4) Falling glucose beyond 2 h or perfusate glucose under 10 mmol/L which, on challenge with 2.5 g glucose, does subsequently fall; 5) Peak lactate fall > 4.4 mmol/L/kg/h; 6) Perfusate ALT < 6000 IU/L at 2 h	4 9 ×	22/47 (46.8%)	1/22 (4.5%)	4/22 (18.2%)
de Vries et al., 2019* 26	7	7/7 (100%)	All of the following: 1) lactate <1.7 mmol/L; 2) perfusate pH 7.35 to 7.45; 3) bile production >10 mL; 4) biliary pH >7.45	2.5 h	5/7 (71.4%)	%0	%0
Matton et al., 2019 73	9	6/6 (100%)	 Biliary bicarbonate > 18 mmol/L; 2) Biliary pH > 7.48; 3) Biliary glucose < 16 mmol/L; Bile/perfusate glucose concentration ratio < 0.67; 5) Biliary LDH < 3689 IU/L 	2.5 h	4/6 (66.7%)	%0	%0
van Leeuwen et al., ⁴ 2020*	16	16/16 (100%)	All of the following: 1) lactate <1.7 mmol/L; 2) perfusate pH 7.35 to 7.45; 3) bile production >10 mL; 4) biliary pH >7.45	2.5 h	11/16 (68.7%)	%0	1/11 (9.1%)
Mergental et al., 2020 ³⁰	31	14/31 (45.2%)	Perfusate lactate level < 2.5 mmol/L or evidence of bile production + at least 2 of the following: 1) pH > 7.3 ; 2) stable vascular flows (hepatic artery flow > 150 ml/min and portal vein flow > 500 ml/min; 3) homogeneous perfusion and soft consistency	4 h	22/31 (71%)	%0	4/22 (18.2%)
Reiling et al., 2020 77	10	5/10 (50%)	 Lactate clearance to < 2 mmol/L within 2 hours; 2) Glucose metabolism as evidenced by a decreasing trend in serum glucose concentration by 4 hours; 3) Maintenance of physiological pH; 4) Stable hepatic arterial and portal venous flows; 5) Homogeneous graft perfusion with soft consistency of parenchyma 6) Bile production (no lower limit) 	2-4 h	10/10 (100%)	%0	%0
Hann et al., 2021 ⁷²	വ	0/5 (0%)	Perfusate lactate level < 2.5 mmol/L or evidence of bile production + at least 2 of the following: 1) pH > 7.3 ; 2) stable vascular flows (hepatic artery flow > 150 ml/min and portal vein flow > 500 ml/min; 3) homogeneous perfusion and soft consistency	6 h	AN	%0	NA
Quintini et al., 2022 ²⁷	21	13/21 (61.9%)	At least two of the following: 1) lowest perfusate lactate level < 4.5 mmol/L or a decrease of 60% from peak in the first 4 hours; 2) bile production rate higher than 2 mL/h; 3) stable HA flow of > 0.05 mL/min/g of liver weight and PV flow >0.4 mL/min/g of liver weight, 4) macroscopic homogenous perfusion and soft consistency	6 h	15/21 (71.5%)	%0	1/15 (6.7%)
van Leeuwen et al., ²⁸ 2022*	54	53/54 (98.2%)	"Green zone" criteria**: 1) lactate < 1.7 mmol/L; 2) perfusate pH 7.35 to 7.45; 3) bite production > 10 mL; 4) biliary pH > 7.45; 5) Δ pH > 0.10; 6) Δ HC03- > 5 mmol/L; 7) Δ glucose < -5 mmol/L	2.5 h	34/54 (63%)	%0	1/34 (2.9%)
* In these studies, normoth	ermic r	machine per	fusion was initiated after a period of dual hypothermic oxygenated machine perfusion and controlled or criteria Places and that the utilitized desiring to utilize the liver for transcalact was taken by the tra-	oxygenated	l rewarming; **	Please see	the original

manuscript for a detailed description of viability criteria. Please note that the utilimate decision to utilize the liver for transplant was taken by the printing team, taking in medical condition and urgency of the potential recipient. Abbreviations: DCD: donation after circulatory death; PNF: primary non-function; IC: ischemic cholangiopathy, AST: aspartate aminotransferase; ALT: alanine aminotransferase

Figure 2. Evolution of viability assessment criteria at Birmingham and Groningen centers. .

repeat LT (re-LT) performed using NMP-preserved suboptimal liver grafts were compared to those performed with SCS-preserved optimal livers. As outcomes in both cohorts were comparable, authors conclude that NMP allowed achieving comparable outcomes despite the utilization of grafts from extended-criteria donors, thereby improving access to LT for patients awaiting re-LT. However, it is well possible that NMP also contributed to the good outcomes achieved in this study by buying more time to the transplanting surgeon having to perform a difficult recipient hepatectomy. By allowing longer preservation without the detrimental effects of prolonged cold ischemia time, NMP can relieve time pressure, which is of inestimable value especially in complex surgical cases, as re-LT frequently are. Finally, safely extending preservation time could facilitate organ sharing across longer distances, especially in the case of split livers. In-situ split requires an expertise that is not universally available in procurement teams, while ex-situ splitting might be not ideal, especially when the recipients of the two partial grafts are not located in the same hospital. Although livers considered for split procedures are highly selected, they can nonetheless suffer from the consequences of surgical manipulation and prolonged cold ischemia time and might benefit from an enhanced preservation modality. Liver splitting during NMP is technically feasible ⁸⁶ and recently, prolonged NMP preservation of a split liver graft has been recently

reported ⁸⁷. Ideally, the liver could be placed on the NMP device at the donor hospital, transported and split while on the device at the first recipient hospital, and then transported under continuous NMP at the second recipient hospital, an approach that would combine better preservation with the optimization of human resources. Obviously, the benefits and feasibility of this approach would be highly dependent on organizational and geographical factors, and several variations are possible.

Normothermic machine perfusion as a platform for organ reconditioning

As stated in the previous paragraphs, NMP has allowed achieving good LT outcomes with grafts from ECD and to recover approximately 70% of initially discarded grafts. In some cases, however, a graft can be considered too damaged to be utilized for transplantation, even following reconditioning and viability testing. NMP could be used not only to assess organ function, but also to improve it. Since during NMP the liver is metabolically active, it is potentially susceptible to treatments delivered *ex-situ*. Several strategies to improve organ quality have been explored in experimental studies, including defatting, gene silencing and cell-based therapies (Tab. II, Fig. 3).

Defatting strategies

Fatty livers, especially those with > 30% macrovesicular

steatosis, are associated with an increased incidence of short- and long-term complications following LT and are frequently rejected ^{88,89}. Pharmacological defatting during NMP could improve post-LT of fatty livers.

In the study by Nagrath et al. ⁹⁰ the combination of forskolin (a glucagon mimetic), hypericin (a pregnane X receptor ligand), scoparone (a constitutive androstane receptor ligand), visfatin (an insulin mimetic), GW7647 (a PPAR α ligand) and GW501516 (a PPAR δ ligand) reduced triglyceride hepatocellular content by 65% in livers from obese Zucker rats after only 3 hours of NMP. Of note, when used at subnormothermic temperatures, the same cocktail failed to decrease liver lipid content, confirming the need of a fully active metabolism to successfully perform liver defatting ⁹¹. In a study involving 10 discarded human livers randomly assigned to either NMP alone or defatting-NMP, addition of l-carnitine to the aforementioned cocktail further improved defatting ⁹². In the treatment group, a 40% decrease in tissue triglyceride content and macrovesicular steatosis were observed after 6 hours of perfusion, along with improved mitochondrial function and a reduction in oxidative injury markers and inflammatory cytokines. Importantly, all livers treated with the defatting solution finally met transplant viability criteria, as confirmed by

Figure 3. Organ treatment strategies during normothermic machine perfusion.

enhanced hemodynamics, lactate clearance and biliary function. More recently, in a rat model of 6-hours NMP, the same defatting solution downregulated pro-inflammatory genes (NF- κ B and TNF- α), promoted the expression of fatty acid β -oxidation genes and increased liver viability, as confirmed by lower LDH release and better bile quality in the defatting group ⁹³. However, perfusate supplementation with defatting agents was associated with increased transaminase levels and insulin resistance.

Whether these protocols will be implemented in clinical practice is, however, a matter of concern, as some of these drugs still lack data about safety. The use of GW compounds is controversial since their administration has been associated with an increased risk of hepatic carcinogenesis 94. Thus, glial cell line-derived neurotrophic factor (GDNF) has been proposed as an alternative ⁹⁵. In a murine model of defatting-NMP comparing GDNF to the forskolin/hypericin/ scoparone/visfatin/GW-cocktail, the Authors demonstrated an equal effectiveness of the two treatments in terms of intracellular fat content reduction, but GDNF was associated with less LDH activity, a surrogate marker of hepatotoxicity. Similarly, the replacement of the GW compounds with epigallocatechin-3-gallate and resveratrol did not affect the ability of the solution to reduce tissue triglyceride content, but reduced hepatocyte injury and AKT phosphorylation, an indicator of the risk of malignant proliferation ⁹⁴.

Finally, Banan et al. ⁹⁶ perfused 2 discarded steatotic human livers adding only l-carnitine and exendin-4 to the perfusate. After 8 hours of NMP, a rise in triglyceride and LDL perfusate levels was observed together with a mild decrease (10%) in macrovesicular steatosis in one of the two cases.

However, in none of these studies treated grafts were eventually transplanted. Future experiments are required to clarify what should be the goal of liver defatting protocols and whether this will translate into superior clinical outcomes.

Gene silencing during NMP

RNA interference (RNAi) is a biological process that regulates the expression of protein-coding genes through a mechanism mediated by small complementary sequences of double-stranded RNA that can suppress the translation into proteins of specific mRNA. Small interfering RNA (siRNA), microRNA (miRNA) and short hairpin RNA (shRNA) are the central components of the RNAi system, and they exert their activity through specific post-transcriptional pathways ⁹⁷. RNAi has gained great interest as a possible source for new therapeutics in different clinical fields, including LT. Several studies have reported promising results with systemic injection of miRNA, shRNA or siRNA in rodent models of hepatic IRI ⁹⁸.

However, despite its current success, some issues related to the use of RNAi still need to be resolved, such as *in vivo* instability and selectivity ⁹⁷. By providing a closed circuit in which the liver is isolated from other organs, machine perfusion clearly offers an ideal scenario for RNAi, as it guarantees organ-specific administration with no risk of systemic RNA degradation.

Goldaracena et al. ⁹⁹ were the first to obtain RNAi during NMP. In their pioneering study, Miravirsen, an antisense miRNA122 oligonucleotide, was used during NMP of pig liver grafts to induce resistance to hepatitis C virus, demonstrating the possibility of *ex-vivo* gene silencing in the peri-transplant setting. In the study by Gillooly et al. ¹⁰⁰, siRNA against Fas, a receptor involved in the apoptotic cascade, was successfully delivered to the perfused liver during NMP. To enhance cellular uptake, siRNA was coated with invivofectamine lipid nanoparticles.

However, while the possibility of graft reconditioning by RNAi is exciting, it is still at an early stage, since only a few preclinical studies have tested its feasibility. Further evidence about the effects on liver viability is warranted.

Cell-based therapies

Regenerative medicine uses stem cells and stem cellderived products to promote the repair of injured tissues. In the context of solid organ transplantation, the regenerative and immuno-modulatory properties of stem cells make them an attractive source for graft reconditioning ¹⁰¹. MP represents a unique tool to facilitate the application of regenerative treatments, as it avoids some of the side effects of the systemic stem cells injection while it facilitates their administration and studying their mechanisms of action. The combination of MP and stem cells or stem cells derivatives is still in its infancy, but some experimental studies have been recently published with promising results.

Mesenchymal stem cells (MSC) are multipotent stem cells that can be isolated from different sources, such as umbilical cord, bone marrow and adipose tissue. The group from Tianjin produced a quite large body of literature using bone marrow-derived MSC (BM-MSC) in the LT setting ¹⁰²⁻¹⁰⁹. In a rat DCD model, combining BM-MSC with NMP resulted in improved liver function, better histology and less apoptosis as compared to SCS followed by or NMP alone ¹⁰²⁻¹⁰⁴. BM-MSC treatment enhanced sinusoidal microcirculation by regulating ICAM-1, VCAM-1, vWF, ET-1 and eNOS expression, and reduced ROS production, Fe²⁺ imbalance and mitochondrial injury through the inhibition of the JNK-NF-kB pathway and the activation of AMPK. When applied in a rat model of DCD liver transplantation, the association of BM-MSC and NMP increased survival rate and reduced cholangiocyte injury, as confirmed by tissue histology and CK19 expression ¹⁰⁵. The same group showed that transfecting BM-MSC with heme oxygenase-1 (HO-1) gene improved their viability and produced even better results. HO-1 modified BM-MSC (HO-1/BM-MSC) added to NMP were superior not only to SCS and

-	-)			-
ŧΙ	lor	Model	Treatment	Time	Mechanism	
	grath et al., 2009 [%]	Obese Rat	Forskolin, hypericin, scoparone, visfatin, GW7647, GW501516	ч к	 	d tion
	teon et al., 2019 ⁹²	Steatotic discarded human livers	Forskolin, hypericin, scoparone, visfatin, GW7647, GW501516, L-carnitine	12 h	 L expression of inflammato signaling C expression of fatty acid β-oxidation signaling 	2
	iigani et al., 2020 ⁹³	Obese rat	Forskolin, hypericin, scoparone, visfatin, GW7647, GW501516, L-carnitine	6 h	↓ expression of inflammato signaling ↑ expression of fatty acid β-oxidation signaling	Z
	ba Taba Vakili et al., 2016 %	High fat diet-fed mouse	GDNF	4 h	↑ lipolysis	
	ı et al., 2021 ⁹⁴	Obese rat	Forskolin, hypericin, scoparone, L-carnitine, epigallocatechin-3-gallate, resveratrol	4 h	\wedge expression of AMPK signalli	Б.
	inan et al., 2016 %	Steatotic discarded human livers	Exendin-4, L-carnitine	Ч 8	NA	
-	ldaracena et al., 2017 ⁹⁹	Pig	Miravirsen	12 h or 4 h + OLT	miRNA-122 silencing	
	looly et al., 2019 ¹⁰⁰	Rat	Fas siRNA	4 h	Fas gene silencing	

continues.	
<u></u>	
=	
٩	
ρ	

2020 ¹⁰³ 30 min-DCD Rat BM-MSC 8 h \downarrow expression of JNK-I
30 min-DCD Rat BM-MSC 8 h
BM-MSC 8 h ↓ oxidative stress (↓MF ↑ GSH) ↓ expression of JNK-I
ϕ in ϕ usualities (WM) ϕ expression of JNK-I expression of JNK-I
↓ expression of JNK-I
NF-kB

	Rigo et al., 2018 ¹¹⁹	Rat	HLSC-EV	4 h (hypoxic NMP)	↓ HIF-1α, TGF-1	↓ AST, LDH ↓ Suzuki's scores, apoptotic cells
	De Stefano et al., 2021 ¹²⁰	Rat	HLSC-EV	ц ð	NA	 ↓ AST, ALT, phosphates, vascular resistance ↓ total HCO₃⁻ need ↑ bile production ↓ necrosis ↑ proliferation
	Sampaziotis et al., 2021 ¹²¹	Discarded human livers	Gallbladder cholangiocyte organoids	100 h	Differentiation of gallbladder organoids into intrahepatic cholangiocytes	~40-85% regeneration of injected intrahepatic ducts
	Beal et al., 2019 ¹²²	Rat	Enkephalin	4 h (hypoxic NMP)	 ↓ oxidative stress (↓MDA, ↑Glutathione) ↓ expression of p38 and JNK signaling ↑ expression of p-Akt, PI3K, and Bcl-2 signaling 	↓ ALT ↑ ATP ↓ apoptotic cells
soiteni	Westerkamp et al., 2020 ¹²³	Rat	Metformin preconditioning	а Ч	NA	 ▲ ATP ◆ bile production and quality ↓ lactate and glucose ↓ post-transplant AST
armacoki	Haque et al., 2021 ¹²⁴	DCD discarded human liver	Plasminogen + tPA	12 h	NA	 peribiliary vascular plexus injury scores No intramural bleeding
yd pue s6nup	Garcia-Aroz et al., 2022 ¹²⁵	30-60 min-DCD Pig	CD47 monoclonal antibody	6 h	 ↓ neutrophil infiltration ↓ expression of TSP-1/CD47 signaling ↑ expression of pERK signaling 	↓ AST, ALT ↑ bile production
o ned to	Del Turco et al., 2022 ¹²⁶	Discarded human livers	Cerium oxide nanoparticles	4 H	\downarrow oxidative stress (\uparrow GSH, SOD and CAT)	 ↓ mitochondrial damage ↓ lipid peroxidation products
)	Stevens et al., 2021 ¹²⁷	Pig	atorvastatin, pitavastatin, rosuvastatin	7 h	NA	Toxicity, pharmacokinetics and drug-to-drug interaction analyses
	Tingle et al., 2022 ¹²⁸	Steatotic discarded human livers	2,4-dinitrophenol	25 h	NA	Toxicity and pharmacokinetics analyses ↑ oxygen consumption ↓ necrosis

NMP alone, but also to NMP + BM-MSC in improving rat liver function and recipient survival ¹⁰⁶⁻¹⁰⁹. Two weeks after transplantation, serum levels of IL-1 β , IL-6, TNF- α , HMGB1 and TLR4/NF- κ B pathway molecules, all key actors of the inflammatory response to IRI, were significantly lower in the HO-1/BM-MSC group ¹⁰⁶. When applied to an acute rejection murine liver transplantation model, HO-1/BM-MSC significantly reduced tissue injury and apoptosis, being equal to calcineurin inhibitors in protecting from acute cellular rejection ^{107,108}. In particular, HO-1/BM-MSC reduced INF- γ expression and NK and CD8+ T cells infiltration into liver grafts ¹⁰⁷, and limited dendritic cells and CD4+ T cells activation ¹⁰⁸. Finally, the HO-1/BM-MSC treatment was also effective in reducing bile duct injury after transplantation ¹⁰⁹. The Authors identified in the activation of the Wnt signaling pathway the mechanism by which HO-1/BM-MSC promoted the proliferation of the residual peribiliary glands cholangiocytes.

The infusion of MSC and Multipotent Adult Progenitor Cells during machine perfusion of porcine ¹¹⁰ and discarded human livers ¹¹¹ proved the feasibility of this technique also on larger-size liver grafts, and confirmed the ability of stem cells to modulate key inflammatory genes ex-vivo. Human liver stem cells (HLSC) are a mesenchymal-like stem cell population with regenerative and hepatoprotective activity ¹¹²⁻¹¹⁴. Extracellular vesicles from HLSC (HLSC-EV) play a central role in the paracrine mechanism of action of HLSC and have been shown to be effective in several models of acute and chronic liver injury ¹¹⁵⁻¹¹⁷. Compared to stem cell-based treatments, HLSC-EV could be advantageous in terms of genetical stability, storage conditions and administration route, especially in the transplantation setting ¹¹⁸. Our group firstly reported the successful administration of HLSC-EV during hypoxic-NMP ¹¹⁹. After 4 hours of NMP the hepatocyte uptake of HLSC-EV was confirmed by epifluorescence microscopy and treated livers showed reduced cytolysis, tissue injury, and overexpression of HIF-1 α and TGF- β 1. Furthermore, to investigate the effects of HLSC-EV in a high-risk DCD condition, we developed a prolonged warm ischemia model of rat liver NMP enriched with HLSC-EV ¹²⁰. The organs treated with HLSC-EV showed less transaminases release and preserved liver function, with enhanced pH self-regulation and phosphate utilization. Interestingly, when higher doses of HLSC-EV were added to the perfusate, a further improvement was observed on bile production, hemodynamics, tissue necrosis and cell proliferation, suggesting a dose-response correlation.

Another fascinating treatment is represented by organoids, three dimensional multicellular structures that mimic their corresponding *in vivo* organ and can be used to repair injured tissues ¹⁰¹. In a landmark study, Sampaziotis et al. ¹²¹ injected cholangiocyte organoids into intrahepatic bile ducts of human donor livers and showed that after 100 hours of NMP the treatment fully protected the biliary tree from ischemic cholangiopathy and regenerated up to 85% of the injected ducts.

Taken together, these preliminary studies have paved the way for the administration of cell-based therapies during NMP, but further research is required to investigate their safety and efficacy *in vivo*.

Further applications of NMP in drug delivery

Enkephalin, an opioid agonist of delta receptors, has been administered during rat liver NMP obtaining a reduction of oxidative stress, as demonstrated by lower AST, MDA and glutathione levels, increased ATP synthesis and preserved tissue integrity ¹²². The Groningen group has used metformin to precondition rat livers before NMP, resulting in improved hepatobiliary function and lower post-transplant transaminases ¹²³.

Administration of thrombolytic agents has been proposed as a possible strategy to reduce ischemic cholangiopathy in DCD livers, but it is associated with an increased risk of intraoperative bleeding. Haque et al. ¹²⁴ treated discarded DCD livers with tissue plasminogen activator (tPA) during NMP. *Ex-vivo* tPA administration reduced peribiliary vascular plexus injury while avoiding intrahepatic bleeding.

More recently, humanized antiCD47 monoclonal antibodies have been infused into porcine livers before NMP to block the endothelial CD47 cascade and reduce IRI ¹²⁵. CD47 signaling pathway blockade increased bile production and reduced transaminases levels and neutrophil infiltration in livers suffering from up to 60 minutes of warm ischemia.

In another recent study involving 9 discarded human livers, Del Turco et al. ¹²⁶ successfully administered Cerium oxide nanoparticles during NMP, showing reduced oxidative stress and preserved mitochondrial morphology.

Finally, NMP can be used not only to deliver therapies aimed to ameliorate organs for transplantation, but also to study their pharmacological properties. In fact, perfusate, tissue and bile samples can be easily collected during NMP to perform toxicity analyses, pharmacokinetics profiling and/or pharmacodynamics assessment ^{127,128}.

DISCUSSION

Technological evolution has allowed NMP of the liver to become reality. The main advantages of NMP over SCS are improved graft preservation together with the possibility to prolong preservation time and to assess liver viability ³⁹. Its wider implementation could potentially transform LT practice, radically modifying transplant logistics and possibly allowing a safe expansion of donor pool. The recent technical implementations, which have allowed achieving the previously unimaginable goal of perfusing a liver for a week ¹², unfold new scenarios for long-term liver evaluation, reconditioning and repair.

Given the complexity of NMP, a thorough understanding of its technical and mechanistic principles is necessary for anyone willing to approach this fascinating but demanding area of organ preservation. Appropriate training and technical support appear of paramount importance, given that surgical errors or device malfunction can rapidly result in organ loss during NMP ⁶². Troubleshooting procedures and a back-up plan for rapid conversion to SCS should be well established before embarking in this delicate organ preservation modality. Furthermore, a thorough understanding of NMP physiology is necessary to correctly interpret different viability parameters and to put them together in a coherent picture. Current viability criteria should still be considered as centre- and setting-specific, possibly evolving in the near future, and an adjunct, rather than a substitute, of critical decisionmaking. Finally, clinical NMP implementation may require a rethinking of organizational models and the availability of new professional figures (i.e. organ perfusionists), with a clear definition of procedures and roles ⁷¹.

In conclusion, we are at the beginning of a new era in organ preservation and NMP represents one promising preservation strategy, with a potentially disruptive impact on how LT is conceived. The future will tell us to what extent the many potentialities of NMP will found application in clinical practice.

Acknowledgements

Authors thank Elisa Lodi and Dan Fower for their precious inputs on technical aspects of NMP devices.

Conflict of interest statement

The Authors declare no conflict of interest.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-forprofit sectors.

Authors' contributions

DP: study design, literature review, manuscript drafting and review; NDS, FR, DC: literature review and manuscript drafting; RR, supervision and critical manuscript revision.

Ethical consideration

Given the nature of this article, Ethical Approval was not sought.

References

¹ Guarrera JV, Henry SD, Samstein B, et al. Hypothermic machine preservation in human liver transplantation: the first clinical series. Am J Transplant 2010;10:372-381. https://doi. org/10.1111/j.1600-6143.2009.02932.x

- ² Friend PJ, Imber C, St Peter S, et al. Normothermic perfusion of the isolated liver. Transplant Proc 2001;33:3436-3438. https://doi.org/10.1016/s0041-1345(01)02481-2
- ³ Matton APM, Burlage LC, van Rijn R, et al. Normothermic machine perfusion of donor livers without the need for human blood products. Liver Transpl 2018;24:528-538. https://doi. org/10.1002/lt.25005
- ⁴ van Leeuwen OB, de Vries Y, Fujiyoshi M, et al. Transplantation of high-risk donor livers after ex-situ resuscitation and assessment using combined hypo- and normothermic machine perfusion: a prospective clinical trial. Ann Surg 2019;270:906-914. https://doi.org/10.1097/SLA.000000000003540
- ⁵ Vogel T, Brockmann JG, Coussios C, et al. The role of normothermic extracorporeal perfusion in minimizing ischemia reperfusion injury. Transplant Rev (Orlando) 2012;26:156-162. https://doi.org/10.1016/j.trre.2011.02.004
- ⁶ Butler AJ, Rees MA, Wight DG, et al. Successful extracorporeal porcine liver perfusion for 72 hr. Transplantation 2002;73:1212-1218. https://doi.org/10.1097/00007890-200204270-00005
- ⁷ Watson CJE, Kosmoliaptsis V, Randle LV, et al. Normothermic perfusion in the assessment and preservation of declined livers before transplantation: hyperoxia and vasoplegia-important lessons from the first 12 cases. Transplantation 2017;101:1084-1098. https://doi.org/10.1097/ TP.000000000001661
- ⁸ Drummond M, Braile DM, Lima-Oliveira APM, et al. Technological evolution of membrane oxygenators. Braz J Cardiovasc Surg 2005;20:432-437. https://doi.org/10.1590/ S0102-76382005000400012
- ⁹ MacLaren G, Combes A, Bartlett RH. Contemporary extracorporeal membrane oxygenation for adult respiratory failure: life support in the new era. Intensive Care Med 2012;38:210-220. https://doi.org/10.1007/s00134-011-2439-2
- ¹⁰ Gilbo N, Wylin T, Heedfeld V, et al. porcine liver normothermic machine perfusion: methodological framework and potential pitfalls. Transplant Direct 2022;8:e1276. https://doi. org/10.1097/TXD.00000000001276
- ¹¹ Vogel T, Brockmann JG, Quaglia A, et al. The 24-hour normothermic machine perfusion of discarded human liver grafts. Liver Transpl 2017;23:207-220. https://doi.org/10.1002/ lt.24672
- ¹² Eshmuminov D, Becker D, Bautista Borrego L, et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat Biotechnol 2020;38:189-198. https://doi. org/10.1038/s41587-019-0374-x
- ¹³ Eshmuminov D, Becker D, Hefti ML, et al. Hyperoxia in portal vein causes enhanced vasoconstriction in arterial vascular bed. Sci Rep 2020;10:20966. https://doi.org/10.1038/ s41598-020-77915-0
- ¹⁴ Clavien PA, Dutkowski P, Mueller M, et al. Transplantation of a human liver following 3 days of ex-situ normothermic preservation. Nat Biotechnol 2022. https://doi.org/10.1038/ s41587-022-01354-7 [Epub Ahead of Print]
- ¹⁵ Abdia Y, Kulasekera KB, Datta S, et al. Propensity scores based methods for estimating average treatment effect

and average treatment effect among treated: a comparative study. Biom J 2017;59:967-985. https://doi.org/10.1002/ bimj.201600094

- ¹⁶ Muller X, Schlegel A, Kron P, et al. Novel real-time prediction of liver graft function during hypothermic oxygenated machine perfusion before liver transplantation. Ann Surg 2019;270:783-790. https://doi.org/10.1097/ SLA.000000000003513
- ¹⁷ Sousa Da Silva RX, Weber A, Dutkowski P, et al. Machine perfusion in liver transplantation. Hepatology 2022. https://doi. org/10.1002/hep.32546 [Epub Ahead of Print]
- ¹⁸ Karangwa SA, Dutkowski P, Fontes P, et al. Machine perfusion of donor livers for transplantation: a proposal for standardized nomenclature and reporting guidelines. Am J Transplant 2016;16:2932-2942. https://doi.org/10.1111/ajt.13843
- ¹⁹ Reddy S, Greenwood J, Maniakin N, et al. Non-heart-beating donor porcine livers: the adverse effect of cooling. Liver Transpl 2005;11:35-38. https://doi.org/10.1002/lt.20287
- ²⁰ Reddy SP, Bhattacharjya S, Maniakin N, et al. Preservation of porcine non-heart-beating donor livers by sequential cold storage and warm perfusion. Transplantation 2004;77:1328-1332. https://doi.org/10.1097/01.tp.0000119206.63326.56
- ²¹ Markmann JF, Abouljoud MS, Ghobrial RM, et al. Impact of portable normothermic blood-based machine perfusion on outcomes of liver transplant: the OCS Liver PROTECT randomized clinical trial. JAMA Surg 2022;157:189-198. https:// doi.org/10.1001/jamasurg.2021.6781
- ²² Nasralla D, Coussios CC, Mergental H, et al. A randomized trial of normothermic preservation in liver transplantation. Nature 2018;557:50-56. https://doi.org/10.1038/ s41586-018-0047-9
- ²³ Nasralla D, Lembach H, Mergental H, et al. Ex-situ arterial reconstruction during normothermic perfusion of the liver. Transplant Direct 2020;6:e596. https://doi.org/10.1097/ TXD.000000000001040
- ²⁴ Fodor M, Cardini B, Peter W, et al. Static cold storage compared with normothermic machine perfusion of the liver and effect on ischaemic-type biliary lesions after transplantation: a propensity score-matched study. Br J Surg 2021;108:1082-1089. https://doi.org/10.1093/bjs/znab118
- ²⁵ Ghinolfi D, Rreka E, De Tata V, et al. Pilot, open, randomized, prospective trial for normothermic machine perfusion evaluation in liver transplantation from older donors. Liver Transpl 2019;25:436-449. https://doi.org/10.1002/lt.25362
- ²⁶ Op den Dries S, Karimian N, Porte RJ. Normothermic machine perfusion of discarded liver grafts. Am J Transplant 2013;13:2504. https://doi.org/10.1111/ajt.12374
- ²⁷ Quintini C, Del Prete L, Simioni A, et al. Transplantation of declined livers after normothermic perfusion. Surgery 2022;171:747-756. https://doi.org/10.1016/j. surg.2021.10.056
- ²⁸ van Leeuwen OB, Bodewes SB, Lantinga VA, et al. Sequential hypothermic and normothermic machine perfusion enables safe transplantation of high-risk donor livers. Am J Transplant 2022;22:1658-1670. https://doi.org/10.1111/ajt.17022
- ²⁹ Watson CJE, Kosmoliaptsis V, Pley C, et al. Observations on the ex-situ perfusion of livers for transplantation. Am J

Transplant 2018;18:2005-2020. https://doi.org/10.1111/ ajt.14687

- ³⁰ Ceresa CDL, Nasralla D, Watson CJE, et al. Transient cold storage prior to normothermic liver perfusion may facilitate adoption of a novel technology. Liver Transpl 2019;25:1503-1513. https://doi.org/10.1002/lt.25584
- ³¹ Bral M, Dajani K, Leon Izquierdo D, et al. A back-to-base experience of human normothermic ex-situ liver perfusion: does the chill kill? Liver Transpl 2019;25:848-858 https://doi. org/10.1002/lt.25464
- ³² Mergental H, Laing RW, Kirkham AJ, et al. Transplantation of discarded livers following viability testing with normothermic machine perfusion. Nat Commun 2020;11:2939. https:// doi.org/10.1038/s41467-020-16251-3
- ³³ He X, Guo Z, Zhao Q, et al. The first case of ischemia-free organ transplantation in humans: a proof of concept. Am J Transplant 2018;18:737-744. https://doi.org/10.1111/ ajt.14583
- ³⁴ Zhang Y, Huang C, Ju W, et al. Avoiding Ischemia reperfusion injury in liver transplantation. J Vis Exp 2020;Dec 3. https:// doi.org/10.3791/61485 [Epub Ahead of Print]
- ³⁵ Guo Z, Xu J, Huang S, et al. Abrogation of graft ischemiareperfusion injury in ischemia-free liver transplantation. Clin Transl Med 2022;12:e546. https://doi.org/10.1002/ctm2.546
- ³⁶ Parente A, Osei-Bordom DC, Ronca V, et al. Organ restoration with normothermic machine perfusion and immune reaction. Front Immunol 2020;11:565616. https://doi.org/10.3389/ fimmu.2020.565616
- ³⁷ Ligeret H, Brault A, Vallerand D, et al. Antioxidant and mitochondrial protective effects of silibinin in cold preservation-warm reperfusion liver injury. J Ethnopharmacol 2008;115:507-514. https://doi.org/10.1016/j.jep.2007.10.024
- ³⁸ Horvath T, Jasz DK, Barath B, et al. Mitochondrial consequences of organ preservation techniques during liver transplantation. Int J Mol Sci 2021;22. https://doi.org/10.3390/ ijms22062816
- ³⁹ Brockmann J, Reddy S, Coussios C, et al. Normothermic perfusion: a new paradigm for organ preservation. Ann Surg 2009;250:1-6. https://doi.org/10.1097/ SLA.0b013e3181a63c10
- ⁴⁰ Ceresa CDL, Nasralla D, Coussios CC, et al. The case for normothermic machine perfusion in liver transplantation. Liver Transpl 2018;24:269-275. https://doi.org/10.1002/lt.25000
- ⁴¹ Xu H, Berendsen T, Kim K, et al. Excorporeal normothermic machine perfusion resuscitates pig DCD livers with extended warm ischemia. J Surg Res 2012;173:e83-88. https://doi. org/10.1016/j.jss.2011.09.057
- ⁴² Yoshida K, Nakamura S, Sakamoto H, et al. Normothermic machine perfusion system satisfying oxygen demand of liver could maintain liver function more than subnormothermic machine perfusion. J Biosci Bioeng 2021;131:107-113. https://doi.org/10.1016/j.jbiosc.2020.08.011
- ⁴³ Lonati C, Dondossola D, Zizmare L, et al. Quantitative metabolomics of tissue, perfusate, and bile from rat livers subjected

to normothermic machine perfusion. Biomedicines 2022;10. https://doi.org/10.3390/biomedicines10030538

- ⁴⁴ Boteon YL, Laing RW, Schlegel A, et al. Combined hypothermic and normothermic machine perfusion improves functional recovery of extended criteria donor livers. Liver Transpl 2018;24:1699-1715. https://doi.org/10.1002/lt.25315
- ⁴⁵ Boteon YL, Laing RW, Schlegel A, et al. The impact on the bioenergetic status and oxidative-mediated tissue injury of a combined protocol of hypothermic and normothermic machine perfusion using an acellular haemoglobin-based oxygen carrier: the cold-to-warm machine perfusion of the liver. PLoS One 2019;14:e0224066. https://doi.org/10.1371/ journal.pone.0224066
- ⁴⁶ Qiang X, Yang WL, Wu R, et al. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat Med 2013;19:1489-1495. https:// doi.org/10.1038/nm.3368
- ⁴⁷ Godwin A, Yang WL, Sharma A, et al. Blocking cold-inducible RNA-binding protein protects liver from ischemia-reperfusion injury. Shock 2015;43:24-30. https://doi.org/10.1097/ SHK.000000000000251
- ⁴⁸ Liu W, Fan Y, Ding H, et al. Normothermic machine perfusion attenuates hepatic ischaemia-reperfusion injury by inhibiting CIRP-mediated oxidative stress and mitochondrial fission. J Cell Mol Med 2021;25:11310-11321. https://doi.org/10.1111/ jcmm.17062
- ⁴⁹ Attard J, Sneiders D, Laing R, et al. The effect of end-ischaemic normothermic machine perfusion on donor hepatic artery endothelial integrity. Langenbecks Arch Surg 2022;407:717-726. https://doi.org/10.1007/s00423-021-02394-4
- ⁵⁰ Jassem W, Xystrakis E, Ghnewa YG, et al. Normothermic Machine Perfusion (NMP) inhibits proinflammatory responses in the liver and promotes regeneration. Hepatology 2019;70:682-695. https://doi.org/10.1002/hep.30475
- ⁵¹ Ohman A, Raigani S, Santiago JC, et al. Activation of autophagy during normothermic machine perfusion of discarded livers is associated with improved hepatocellular function. Am J Physiol Gastrointest Liver Physiol 2022;322:G21-G33. https://doi.org/10.1152/ajpgi.00266.2021
- ⁵² Zhang ZB, Gao W, Liu L, et al. Normothermic machine perfusion protects against liver ischemia-reperfusion injury during reduced-size liver transplantation in pigs. Ann Transplant 2019;24:9-17;. https://doi.org/10.12659/AOT.910774
- ⁵³ Karangwa SA, Adelmeijer J, Matton APM, et al. Production of physiologically relevant quantities of hemostatic proteins during ex-situ normothermic machine perfusion of human livers. Liver Transpl 2018;24:1298-1302. https://doi. org/10.1002/lt.25290
- ⁵⁴ Karangwa SA, Burlage LC, Adelmeijer J, et al. Activation of fibrinolysis, but not coagulation, during end-ischemic ex-situ normothermic machine perfusion of human donor livers. Transplantation 2017;101:e42-e48. https://doi.org/10.1097/ TP.000000000001562
- ⁵⁵ Ionescu MI, Tillakaratne S, Hodson J, et al. Normothermic machine perfusion enhances intraoperative hepatocellular synthetic capacity: a propensity score-matched

analysis. Transplantation 2019;103:e198-e207. https://doi. org/10.1097/TP.000000000002720

- ⁵⁶ Gilbo N, Jacquemin M, Nasralla D, et al. Coagulation factors accumulate during normothermic liver machine perfusion regardless of donor type and severity of ischemic injury. Transplantation 2022;106:510-518. https://doi.org/10.1097/ TP.000000000003763
- ⁵⁷ Op den Dries S, Karimian N, Westerkamp AC, et al. Normothermic machine perfusion reduces bile duct injury and improves biliary epithelial function in rat donor livers. Liver Transpl 2016;22:994-1005. https://doi.org/10.1002/lt.24436
- ⁵⁸ Liu Q, Nassar A, Farias K, et al. Sanguineous normothermic machine perfusion improves hemodynamics and biliary epithelial regeneration in donation after cardiac death porcine livers. Liver Transpl 2014;20:987-999. https://doi. org/10.1002/lt.23906
- ⁵⁹ Bral M, Aboelnazar N, Hatami S, et al. Clearance of transaminases during normothermic ex-situ liver perfusion. PLoS One 2019;14:e0215619. https://doi.org/10.1371/journal. pone.0215619
- ⁶⁰ Angelico R, Perera MT, Ravikumar R, et al. Normothermic machine perfusion of deceased donor liver grafts is associated with improved postreperfusion hemodynamics. Transplant Direct 2016;2:e97. https://doi.org/10.1097/ TXD.0000000000000611
- ⁶¹ Ravikumar R, Jassem W, Mergental H, et al. Liver transplantation after ex-vivo normothermic machine preservation: a phase 1 (First-in-Man) clinical trial. Am J Transplant 2016;16:1779-1787. https://doi.org/10.1111/ajt.13708
- ⁶² Bral M, Gala-Lopez B, Bigam D, et al. Preliminary singlecenter canadian experience of human normothermic ex-vivo liver perfusion: results of a clinical trial. Am J Transplant 2017;17:1071-1080. https://doi.org/10.1111/ajt.14049
- ⁶³ Liu Q, Hassan A, Pezzati D, et al. Ex-situ liver machine perfusion: the impact of fresh frozen plasma. Liver Transpl 2020;26:215-226. https://doi.org/10.1002/lt.25668
- ⁶⁴ Feng S, Goodrich NP, Bragg-Gresham JL, et al. Characteristics associated with liver graft failure: the concept of a donor risk index. Am J Transplant 2006;6:783-790. https://doi. org/10.1111/j.1600-6143.2006.01242.x
- ⁶⁵ Dutkowski P, Oberkofler CE, Slankamenac K, et al. Are there better guidelines for allocation in liver transplantation? A novel score targeting justice and utility in the model for endstage liver disease era. Ann Surg 2011;254:745-753; discussion 753. https://doi.org/10.1097/SLA.0b013e3182365081
- ⁶⁶ Halldorson JB, Bakthavatsalam R, Fix O, et al. D-MELD, a simple predictor of post liver transplant mortality for optimization of donor/recipient matching. Am J Transplant 2009;9:318-326. https://doi.org/10.1111/j.1600-6143.2008.02491.x
- ⁶⁷ Angelico M, Nardi A, Romagnoli R, et al. A Bayesian methodology to improve prediction of early graft loss after liver transplantation derived from the liver match study. Dig Liver Dis 2014;46:340-347. https://doi.org/10.1016/j.dld.2013.11.004
- ⁶⁸ Avolio AW, Cillo U, Salizzoni M, et al. Balancing donor and recipient risk factors in liver transplantation: the value of D-MELD with particular reference to HCV

recipients. Am J Transplant 2011;11:2724-2736. https://doi. org/10.1111/j.1600-6143.2011.03732.x

- ⁶⁹ Schlegel A, Kalisvaart M, Scalera I, et al. The UK DCD Risk Score: a new proposal to define futility in donation-after-circulatory-death liver transplantation. J Hepatol 2018;68:456-464. https://doi.org/10.1016/j.jhep.2017.10.034
- Patrono D, Cussa D, Rigo F, et al. Heterogeneous indications and the need for viability assessment: an international survey on the use of machine perfusion in liver transplantation. Artif Organs 2022;46:296-305. https://doi.org/10.1111/aor.14061
- ⁷¹ Cardini B, Oberhuber R, Fodor M, et al. Clinical implementation of prolonged liver preservation and monitoring through normothermic machine perfusion in liver transplantation. Transplantation 2020;104:1917-1928. https://doi.org/.1097/ TP.000000000003296
- ⁷² Hann A, Lembach H, Nutu A, et al. Assessment of deceased brain dead donor liver grafts via normothermic machine perfusion: lactate clearance time threshold can be safely extended to 6 hours. Liver Transpl 2022;28:493-496. https:// doi.org/10.1002/lt.26317
- ⁷³ Matton APM, de Vries Y, Burlage LC, et al. Biliary bicarbonate, ph, and glucose are suitable biomarkers of biliary viability during ex-situ normothermic machine perfusion of human donor livers. Transplantation 2019;103:1405-1413. https:// doi.org/10.1097/TP.00000000002500
- ⁷⁴ Mergental H, Perera MT, Laing RW, et al. Transplantation of declined liver allografts following normothermic ex-situ evaluation. Am J Transplant 2016;16:3235-3245. https://doi. org/10.1111/ajt.13875
- ⁷⁵ Mergental H, Stephenson BTF, Laing RW, et al. Development of clinical criteria for functional assessment to predict primary nonfunction of high-risk livers using normothermic machine perfusion. Liver Transpl 2018;24:1453-1469. https:// doi.org/10.1002/lt.25291
- ⁷⁶ op den Dries S, Karimian N, Sutton ME, et al. Ex-vivo normothermic machine perfusion and viability testing of discarded human donor livers. Am J Transplant 2013;13:1327-1335. https://doi.org/10.1111/ajt.12187
- ⁷⁷ Reiling J, Butler N, Simpson A, et al. Assessment and transplantation of orphan donor livers: a back-to-base approach to normothermic machine perfusion. Liver Transpl 2020;26:1618-1628. https://doi.org/10.1002/lt.25850
- ⁷⁸ Weissenbacher A, Bogensperger C, Oberhuber R, et al. Perfusate enzymes and platelets indicate early allograft dysfunction after transplantation of normothermically preserved livers. Transplantation 2022;106:792-805. https://doi. org/10.1097/TP.00000000003857
- ⁷⁹ Schurink IJ, de Haan JE, Willemse J, et al. A proof of concept study on real-time LiMAx CYP1A2 liver function assessment of donor grafts during normothermic machine perfusion. Sci Rep 2021;11:23444. https://doi.org/10.1038/ s41598-021-02641-0
- ⁸⁰ Mergental H, Laing RW, Hodson J, et al. Introduction of the concept of diagnostic sensitivity and specificity of normothermic

perfusion protocols to assess high-risk donor livers. Liver Transpl 2022;28:794-806. https://doi.org/10.1002/lt.26326

- ⁸¹ Watson CJE, Jochmans I. From "Gut Feeling" to objectivity: machine preservation of the liver as a tool to assess organ viability. Curr Transplant Rep 2018;5:72-81. https://doi. org/10.1007/s40472-018-0178-9
- ⁸² Bruggenwirth IMA, Lantinga VA, Rayar M, et al. Prolonged dual hypothermic oxygenated machine preservation (DHOPE-PRO) in liver transplantation: study protocol for a stage 2, prospective, dual-arm, safety and feasibility clinical trial. BMJ Open Gastroenterol 2022;9. https://doi.org/10.1136/ bmjgast-2021-000842
- ⁸³ Bruggenwirth IMA, Mueller M, Lantinga VA, et al. Prolonged preservation by hypothermic machine perfusion facilitates logistics in liver transplantation: a European observational cohort study. Am J Transplant 2022;22:1842-1851.
- ⁸⁴ Patrono D, Lupo F, Romagnoli R. Shifting from donor to donor-recipient matching perspective in defining indications for machine perfusion in liver transplantation. Updates Surg 2020;72:913-915. https://doi.org/10.1007/ s13304-020-00834-2
- ⁸⁵ Hann A, Lembach H, Nutu A, et al. Outcomes of normothermic machine perfusion of liver grafts in repeat liver transplantation (NAPLES initiative). Br J Surg 2022;109:372-380. https:// doi.org/10.1093/bjs/znab475
- ⁸⁶ Stephenson BTF, Bonney GK, Laing RW, et al. Proof of concept: liver splitting during normothermic machine perfusion. J Surg Case Rep 2018;2018:rjx218. https://doi.org/10.1093/ jscr/rjx218
- ⁸⁷ Lau NS, Ly M, Jacques A, et al. Prolonged ex-vivo normothermic perfusion of a split liver: an innovative approach to increase the number of available grafts. Transplant Direct 2021;7:e763. https://doi.org/10.1097/TXD.00000000001216
- ⁸⁸ Nocito A, El-Badry AM, Clavien PA. When is steatosis too much for transplantation? J Hepatol 2006;45:494-499. https://doi. org/10.1016/j.jhep.2006.07.017
- ⁸⁹ Liu Q, Nassar A, Buccini L, et al. Lipid metabolism and functional assessment of discarded human livers with steatosis undergoing 24 hours of normothermic machine perfusion. Liver Transpl 2018;24:233-245. https://doi.org/10.1002/ lt.24972
- ⁹⁰ Nagrath D, Xu H, Tanimura Y, et al. Metabolic preconditioning of donor organs: defatting fatty livers by normothermic perfusion ex-vivo. Metab Eng 2009;11:274-283. https://doi. org/10.1016/j.ymben.2009.05.005
- ⁹¹ Liu Q, Berendsen T, Izamis ML, et al. Perfusion defatting at subnormothermic temperatures in steatotic rat livers. Transplant Proc 2013;45:3209-3213. https://doi.org/10.1016/j. transproceed.2013.05.005
- ⁹² Boteon YL, Attard J, Boteon A, et al. Manipulation of lipid metabolism during normothermic machine perfusion: effect of defatting therapies on donor liver functional recovery. Liver Transpl 2019;25:1007-1022. https://doi.org/10.1002/lt.25439
- ⁹³ Raigani S, Carroll C, Griffith S, et al. Improvement of steatotic rat liver function with a defatting cocktail during ex-situ normothermic machine perfusion is not directly related to

liver fat content. PLoS One 2020;15:e0232886. https://doi. org/10.1371/journal.pone.0232886

- ⁹⁴ Xu M, Zhou F, Ahmed O, et al. A novel multidrug combination mitigates rat liver steatosis through activating AMPK pathway during normothermic machine perfusion. Transplantation 2021;105:e215-e225. https://doi.org/10.1097/ TP.000000000003675
- ⁹⁵ Taba Taba Vakili S, Kailar R, Rahman K, et al. Glial cell linederived neurotrophic factor-induced mice liver defatting: a novel strategy to enable transplantation of steatotic livers. Liver Transpl 2016;22:459-467. https://doi.org/10.1002/ lt.24385
- ⁹⁶ Banan B, Watson R, Xu M, et al. Development of a normothermic extracorporeal liver perfusion system toward improving viability and function of human extended criteria donor livers. Liver Transpl 2016;22:979-993. https://doi.org/10.1002/ lt.24451
- ⁹⁷ Thijssen MF, Bruggenwirth IMA, Gillooly A, et al. Gene silencing with siRNA (RNA interference): a new therapeutic option during ex-vivo machine liver perfusion preservation. Liver Transpl 2019;25:140-151. https://doi.org/10.1002/lt.25383
- ⁹⁸ Bruggenwirth IMA, Martins PN. RNA interference therapeutics in organ transplantation: the dawn of a new era. Am J Transplant 2020;20:931-941. https://doi.org/10.1111/ ajt.15689
- ⁹⁹ Goldaracena N, Spetzler VN, Echeverri J, et al. Inducing hepatitis C Virus resistance after pig liver transplantation-a proof of concept of liver graft modification using warm exvivo perfusion. Am J Transplant 2017;17:970-978. https://doi. org/10.1111/ajt.14100
- ¹⁰⁰ Gillooly AR, Perry J, Martins PN. First Report of siRNA Uptake (for RNA interference) during ex-vivo hypothermic and normothermic liver machine perfusion. Transplantation 2019;103:e56-e57. https://doi.org/10.1097/ TP.000000000002515
- ¹⁰¹ Hofmann J, Hackl V, Esser H, et al. Cell-based regeneration and treatment of liver diseases. Int J Mol Sci 2021;22. https://doi.org/10.3390/ijms221910276
- ¹⁰² Yang L, Cao H, Sun D, et al. Bone marrow mesenchymal stem cells combine with normothermic machine perfusion to improve rat donor liver quality-the important role of hepatic microcirculation in donation after circulatory death. Cell Tissue Res 2020;381:239-254. https://doi.org/10.1007/ s00441-020-03202-z
- ¹⁰³ Yang L, Cao H, Sun D, et al. Normothermic machine perfusion combined with bone marrow mesenchymal stem cells improves the oxidative stress response and mitochondrial function in rat donation after circulatory death livers. Stem Cells Dev 2020;29:835-852. https://doi.org/10.1089/scd.2019.0301
- ¹⁰⁴ Sun D, Yang L, Zheng W, et al. Protective effects of Bone Marrow Mesenchymal Stem Cells (BMMSCS) combined with normothermic machine perfusion on liver grafts donated after circulatory death via reducing the ferroptosis of hepatocytes. Med Sci Monit 2021;27:e930258. https://doi.org/10.12659/ MSM.930258
- ¹⁰⁵ Hou B, Song H, Cao H, et al. Effects of bone marrow mesenchymal stem cells combined with normothermic

mechanical perfusion on biliary epithelial cells donated after cardiac death in rats. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2019;31:1137-1142. https://doi.org/10.3760/cma.j.is sn.2095-4352.2019.09.016

- ¹⁰⁶ Cao H, Yang L, Hou B, et al. Heme oxygenase-1-modified bone marrow mesenchymal stem cells combined with normothermic machine perfusion to protect donation after circulatory death liver grafts. Stem Cell Res Ther 2020;11:218. https:// doi.org/10.1186/s13287-020-01736-1
- ¹⁰⁷ Cao H, Wu L, Tian X, et al. H0-1/BMMSC perfusion using a normothermic machine perfusion system reduces the acute rejection of DCD liver transplantation by regulating NKT cell co-inhibitory receptors in rats. Stem Cell Res Ther 2021;12:587. https://doi.org/10.1186/s13287-021-02647-5
- ¹⁰⁸ Wu L, Cao H, Tian X, et al. Bone marrow mesenchymal stem cells modified with heme oxygenase-1 alleviate rejection of donation after circulatory death liver transplantation by inhibiting dendritic cell maturation in rats. Int Immunopharmacol 2022;107:108643. https://doi.org/10.1016/j. intimp.2022.108643
- ¹⁰⁹ Tian X, Cao H, Wu L, et al. Heme Oxygenase-1-modified bone marrow mesenchymal stem cells combined with normothermic machine perfusion repairs bile duct injury in a rat model of DCD liver transplantation via activation of peribiliary glands through the Wnt pathway. Stem Cells Int 2021;2021:9935370. https://doi.org/10.1155/2021/9935370
- ¹¹⁰ Verstegen MMA, Mezzanotte L, Ridwan RY, et al. First Report on ex-vivo delivery of paracrine active human mesenchymal stromal cells to liver grafts during machine perfusion. Transplantation 2020;104:e5-e7. https://doi.org/10.1097/ TP.000000000002986
- ¹¹¹ Laing RW, Stubblefield S, Wallace L, et al. The delivery of multipotent adult progenitor cells to extended criteria human donor livers using normothermic machine perfusion. Front Immunol 2020;11:1226. https://doi.org/10.3389/ fimmu.2020.01226
- ¹¹² Herrera MB, Bruno S, Buttiglieri S, et al. Isolation and characterization of a stem cell population from adult human liver. Stem Cells 2006;24:2840-2850. https://doi.org/10.1634/ stemcells.2006-0114
- ¹¹³ Herrera MB, Fonsato V, Bruno S, et al. Human liver stem cells improve liver injury in a model of fulminant liver failure. Hepatology 2013;57:311-319. https://doi.org/10.1002/ hep.25986
- ¹¹⁴ Navarro-Tableros V, Herrera Sanchez MB, Figliolini F, et al. Recellularization of rat liver scaffolds by human liver stem cells. Tissue Eng Part A 2015;21:1929-1939. https://doi. org/10.1089/ten.TEA.2014.0573
- ¹¹⁵ Herrera MB, Fonsato V, Gatti S, et al. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med 2010;14:1605-1618. https://doi.org/10.1111/j.1582-4934.2009.00860.x
- ¹¹⁶ Bruno S, Pasquino C, Herrera Sanchez MB, et al. HLSCderived extracellular vesicles attenuate liver fibrosis and inflammation in a murine model of non-alcoholic

steatohepatitis. Mol Ther 2020;28:479-489. https://doi. org/10.1016/j.ymthe.2019.10.016

- ¹¹⁷ Calleri A, Roggio D, Navarro-Tableros V, et al. Protective effects of human liver stem cell-derived extracellular vesicles in a mouse model of hepatic ischemia-reperfusion injury. Stem Cell Rev Rep 2021;17:459-470. https://doi.org/10.1007/ s12015-020-10078-7
- ¹¹⁸ Dengu F, Abbas SH, Ebeling G, et al. Normothermic Machine Perfusion (NMP) of the liver as a platform for therapeutic interventions during ex-vivo liver preservation: a review. J Clin Med 2020;9. https://doi.org/10.3390/jcm9041046
- ¹¹⁹ Rigo F, De Stefano N, Navarro-Tableros V, et al. Extracellular vesicles from human liver stem cells reduce injury in an exvivo normothermic hypoxic rat liver perfusion model. Transplantation 2018;102:e205-e210. https://doi.org/10.1097/ TP.000000000002123
- ¹²⁰ De Stefano N, Navarro-Tableros V, Roggio D, et al. Human liver stem cell-derived extracellular vesicles reduce injury in a model of normothermic machine perfusion of rat livers previously exposed to a prolonged warm ischemia. Transpl Int 2021;34:1607-1617. https://doi.org/10.1111/tri.13980
- ¹²¹ Sampaziotis F, Muraro D, Tysoe OC, et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science 2021;371:839-846. https://doi.org/10.1126/science.aaz6964
- ¹²² Beal EW, Kim JL, Reader BF, et al. [D-Ala(2), D-Leu(5)] enkephalin improves liver preservation during normothermic

ex-vivo perfusion. J Surg Res 2019;241:323-335. https://doi. org/10.1016/j.jss.2019.04.010

- ¹²³ Westerkamp AC, Fujiyoshi M, Ottens PJ, et al. Metformin preconditioning improves hepatobiliary function and reduces injury in a rat model of normothermic machine perfusion and orthotopic transplantation. Transplantation 2020;104:e271e280. https://doi.org/10.1097/TP.00000000003216
- ¹²⁴ Haque O, Raigani S, Rosales I, et al. Thrombolytic therapy during ex-vivo normothermic machine perfusion of human livers reduces peribiliary vascular plexus injury. Front Surg 2021;8:644859. https://doi.org/10.3389/fsurg.2021.644859
- ¹²⁵ Garcia-Aroz S, Xu M, Ahmed O, et al. Improving liver graft function using CD47 blockade in the setting of normothermic machine perfusion. Transplantation 2022;106:37-47. https:// doi.org/10.1097/TP.00000000003688
- ¹²⁶ Del Turco S, Cappello V, Tapeinos C, et al. Cerium oxide nanoparticles administration during machine perfusion of discarded human livers: a pilot study. Liver Transpl 2022;28:1173-1185. https://doi.org/10.1002/lt.26421
- ¹²⁷ Stevens LJ, Zhu AZX, Chothe PP, et al. Evaluation of normothermic machine perfusion of porcine livers as a novel preclinical model to predict biliary clearance and transporter-mediated drug-drug interactions using statins. Drug Metab Dispos 2021;49:780-789. https://doi.org/10.1124/ dmd.121.000521
- ¹²⁸ Tingle SJ, Thompson ER, Bates L, et al. Pharmacological testing of therapeutics using normothermic machine perfusion: a pilot study of 2,4-dinitrophenol delivery to steatotic human livers. Artif Organs 2022;46:2201-2214. https://doi. org/10.1111/aor.14309